In [1]:
import pylearn2.utils
import pylearn2.config
import theano
import neukrill_net.dense_dataset
import neukrill_net.utils
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import holoviews as hl
%load_ext holoviews.ipython
import sklearn.metrics


Using gpu device 0: Tesla K40c
:0: FutureWarning: IPython widgets are experimental and may change in the future.
Welcome to the HoloViews IPython extension! (http://ioam.github.io/holoviews/)
Available magics: %compositor, %opts, %params, %view, %%labels, %%opts, %%view
<matplotlib.figure.Figure at 0x7fe4a3685510>
<matplotlib.figure.Figure at 0x7fe4a3685bd0>
<matplotlib.figure.Figure at 0x7fe4a36859d0>

Replicate 8aug

We saw this score a very respectable 0.75 on check_test_score.py, but then repeating this test later could not reproduce the score.


In [37]:
m = pylearn2.utils.serial.load(
    "/disk/scratch/neuroglycerin/models/replicate_8aug.pkl")

In [38]:
print(m)


h1
	Input space: Conv2DSpace(shape=(48, 48), num_channels=1, axes=('b', 0, 1, 'c'), dtype=float32)
	Total input dimension: 2304
h2
	Input space: Conv2DSpace(shape=(21, 21), num_channels=48, axes=('b', 'c', 0, 1), dtype=float32)
	Total input dimension: 21168
h3
	Input space: Conv2DSpace(shape=(9, 9), num_channels=96, axes=('b', 'c', 0, 1), dtype=float32)
	Total input dimension: 7776
h4
	Input space: Conv2DSpace(shape=(11, 11), num_channels=128, axes=('b', 'c', 0, 1), dtype=float32)
	Total input dimension: 15488
h5
	Input space: Conv2DSpace(shape=(7, 7), num_channels=128, axes=('b', 'c', 0, 1), dtype=float32)
	Total input dimension: 6272
y
	Input space: VectorSpace(dim=1024, dtype=float32)
	Total input dimension: 1024

In [6]:
nll_channels = [c for c in m.monitor.channels.keys() if 'nll' in c]

In [7]:
import neukrill_net.plotting as pl

In [39]:
pl.monitor_channels(m, nll_channels, x_axis='time')


Out[39]:

In [40]:
c = m.monitor.channels['valid_y_nll']

In [42]:
plt.plot(c.val_record[200:])


Out[42]:
[<matplotlib.lines.Line2D at 0x7fe49f9c7610>]

In [11]:
24*60*60


Out[11]:
86400

In [13]:
%run ~/repos/pylearn2/pylearn2/scripts/print_monitor.py /disk/scratch/neuroglycerin/models/replicate_8aug_recent.pkl


epochs seen:  500
time trained:  116198.584227
learning_rate : 0.00246499781497
momentum : 0.950000703335
total_seconds_last_epoch : 234.423736572
train_h1_kernel_norms_max : 1.93650114536
train_h1_kernel_norms_mean : 1.11308705807
train_h1_kernel_norms_min : 0.288871735334
train_h1_max_x_max_u : 21.2930374146
train_h1_max_x_mean_u : 3.37690377235
train_h1_max_x_min_u : 0.0281044077128
train_h1_mean_x_max_u : 6.79862976074
train_h1_mean_x_mean_u : 0.561039626598
train_h1_mean_x_min_u : 0.00111330486834
train_h1_min_x_max_u : 1.32200133801
train_h1_min_x_mean_u : 0.0251323096454
train_h1_min_x_min_u : 0.0
train_h1_range_x_max_u : 21.2657623291
train_h1_range_x_mean_u : 3.35177087784
train_h1_range_x_min_u : 0.0278045255691
train_h2_kernel_norms_max : 1.93650114536
train_h2_kernel_norms_mean : 1.92801177502
train_h2_kernel_norms_min : 1.78207170963
train_h2_max_x_max_u : 35.5317726135
train_h2_max_x_mean_u : 7.22665548325
train_h2_max_x_min_u : 0.0
train_h2_mean_x_max_u : 7.86044692993
train_h2_mean_x_mean_u : 0.582683205605
train_h2_mean_x_min_u : 0.0
train_h2_min_x_max_u : 0.308276355267
train_h2_min_x_mean_u : 9.20934398891e-05
train_h2_min_x_min_u : 0.0
train_h2_range_x_max_u : 35.5317726135
train_h2_range_x_mean_u : 7.2265625
train_h2_range_x_min_u : 0.0
train_h3_kernel_norms_max : 1.93650114536
train_h3_kernel_norms_mean : 1.64769792557
train_h3_kernel_norms_min : 0.176338449121
train_h3_max_x_max_u : 33.3718070984
train_h3_max_x_mean_u : 3.96520900726
train_h3_max_x_min_u : 0.0
train_h3_mean_x_max_u : 6.55444574356
train_h3_mean_x_mean_u : 0.283982664347
train_h3_mean_x_min_u : 0.0
train_h3_min_x_max_u : 0.961489021778
train_h3_min_x_mean_u : 0.000388652755646
train_h3_min_x_min_u : 0.0
train_h3_range_x_max_u : 33.3718070984
train_h3_range_x_mean_u : 3.96482205391
train_h3_range_x_min_u : 0.0
train_h4_kernel_norms_max : 1.93650114536
train_h4_kernel_norms_mean : 1.78286504745
train_h4_kernel_norms_min : 1.12213635445
train_h4_max_x_max_u : 17.3449306488
train_h4_max_x_mean_u : 2.344653368
train_h4_max_x_min_u : 0.0
train_h4_mean_x_max_u : 3.90936183929
train_h4_mean_x_mean_u : 0.203701034188
train_h4_mean_x_min_u : 0.0
train_h4_min_x_max_u : 0.18093931675
train_h4_min_x_mean_u : 0.000186214063433
train_h4_min_x_min_u : 0.0
train_h4_range_x_max_u : 17.342086792
train_h4_range_x_mean_u : 2.34446763992
train_h4_range_x_min_u : 0.0
train_h5_col_norms_max : 1.76101565361
train_h5_col_norms_mean : 1.58509230614
train_h5_col_norms_min : 1.49481832981
train_h5_max_x_max_u : 12.7619743347
train_h5_max_x_mean_u : 2.09902739525
train_h5_max_x_min_u : 0.0
train_h5_mean_x_max_u : 4.70505046844
train_h5_mean_x_mean_u : 0.270678699017
train_h5_mean_x_min_u : 0.0
train_h5_min_x_max_u : 0.291980475187
train_h5_min_x_mean_u : 0.000761754694395
train_h5_min_x_min_u : 0.0
train_h5_range_x_max_u : 12.7124509811
train_h5_range_x_mean_u : 2.09826588631
train_h5_range_x_min_u : 0.0
train_h5_row_norms_max : 0.878125965595
train_h5_row_norms_mean : 0.639623522758
train_h5_row_norms_min : 0.5652115345
train_objective : 0.756708323956
train_term_0 : 0.56581568718
train_term_1_weight_decay : 0.190048232675
train_y_col_norms_max : 1.93658566475
train_y_col_norms_mean : 1.9063782692
train_y_col_norms_min : 1.72910737991
train_y_max_max_class : 0.994940757751
train_y_mean_max_class : 0.808819115162
train_y_min_max_class : 0.284907847643
train_y_misclass : 0.119460858405
train_y_nll : 0.376931220293
train_y_row_norms_max : 1.1036041975
train_y_row_norms_mean : 0.638323545456
train_y_row_norms_min : 0.421794861555
training_seconds_this_epoch : 121.919075012
valid_h1_kernel_norms_max : 1.93649935722
valid_h1_kernel_norms_mean : 1.11308765411
valid_h1_kernel_norms_min : 0.288871347904
valid_h1_max_x_max_u : 21.9791412354
valid_h1_max_x_mean_u : 3.71347975731
valid_h1_max_x_min_u : 0.0598256438971
valid_h1_mean_x_max_u : 6.5739197731
valid_h1_mean_x_mean_u : 0.562204480171
valid_h1_mean_x_min_u : 0.00217976444401
valid_h1_min_x_max_u : 0.951017916203
valid_h1_min_x_mean_u : 0.0173420961946
valid_h1_min_x_min_u : 0.0
valid_h1_range_x_max_u : 21.9537410736
valid_h1_range_x_mean_u : 3.69613742828
valid_h1_range_x_min_u : 0.0598256438971
valid_h2_kernel_norms_max : 1.93649971485
valid_h2_kernel_norms_mean : 1.92801344395
valid_h2_kernel_norms_min : 1.78206908703
valid_h2_max_x_max_u : 37.8174438477
valid_h2_max_x_mean_u : 8.10381507874
valid_h2_max_x_min_u : 0.0
valid_h2_mean_x_max_u : 6.91406440735
valid_h2_mean_x_mean_u : 0.585217535496
valid_h2_mean_x_min_u : 0.0
valid_h2_min_x_max_u : 0.0993008315563
valid_h2_min_x_mean_u : 2.43044160015e-05
valid_h2_min_x_min_u : 0.0
valid_h2_range_x_max_u : 37.8174438477
valid_h2_range_x_mean_u : 8.10379123688
valid_h2_range_x_min_u : 0.0
valid_h3_kernel_norms_max : 1.93649971485
valid_h3_kernel_norms_mean : 1.64769494534
valid_h3_kernel_norms_min : 0.176338732243
valid_h3_max_x_max_u : 35.5169258118
valid_h3_max_x_mean_u : 4.46435785294
valid_h3_max_x_min_u : 0.0
valid_h3_mean_x_max_u : 5.43393850327
valid_h3_mean_x_mean_u : 0.284983724356
valid_h3_mean_x_min_u : 0.0
valid_h3_min_x_max_u : 0.980133354664
valid_h3_min_x_mean_u : 0.000275172758847
valid_h3_min_x_min_u : 0.0
valid_h3_range_x_max_u : 35.5169258118
valid_h3_range_x_mean_u : 4.46408319473
valid_h3_range_x_min_u : 0.0
valid_h4_kernel_norms_max : 1.93649971485
valid_h4_kernel_norms_mean : 1.78286409378
valid_h4_kernel_norms_min : 1.122138381
valid_h4_max_x_max_u : 19.5059318542
valid_h4_max_x_mean_u : 2.65247559547
valid_h4_max_x_min_u : 0.0
valid_h4_mean_x_max_u : 3.10162758827
valid_h4_mean_x_mean_u : 0.202698975801
valid_h4_mean_x_min_u : 0.0
valid_h4_min_x_max_u : 0.0986142158508
valid_h4_min_x_mean_u : 0.000115503193229
valid_h4_min_x_min_u : 0.0
valid_h4_range_x_max_u : 19.5059318542
valid_h4_range_x_mean_u : 2.65235996246
valid_h4_range_x_min_u : 0.0
valid_h5_col_norms_max : 1.76101768017
valid_h5_col_norms_mean : 1.58509266376
valid_h5_col_norms_min : 1.49482023716
valid_h5_max_x_max_u : 14.3120355606
valid_h5_max_x_mean_u : 2.87534594536
valid_h5_max_x_min_u : 0.0
valid_h5_mean_x_max_u : 3.59147238731
valid_h5_mean_x_mean_u : 0.270471811295
valid_h5_mean_x_min_u : 0.0
valid_h5_min_x_max_u : 0.042152069509
valid_h5_min_x_mean_u : 6.2061692006e-05
valid_h5_min_x_min_u : 0.0
valid_h5_range_x_max_u : 14.3120355606
valid_h5_range_x_mean_u : 2.87528395653
valid_h5_range_x_min_u : 0.0
valid_h5_row_norms_max : 0.878125071526
valid_h5_row_norms_mean : 0.6396240592
valid_h5_row_norms_min : 0.565209984779
valid_objective : 1.35425674915
valid_term_0 : 1.20305752754
valid_term_1_weight_decay : 0.190048485994
valid_y_col_norms_max : 1.93658077717
valid_y_col_norms_mean : 1.90638029575
valid_y_col_norms_min : 1.72910773754
valid_y_max_max_class : 0.998773038387
valid_y_mean_max_class : 0.768327474594
valid_y_min_max_class : 0.210101738572
valid_y_misclass : 0.267323374748
valid_y_nll : 0.930146455765
valid_y_row_norms_max : 1.10360431671
valid_y_row_norms_mean : 0.638322591782
valid_y_row_norms_min : 0.421795189381

40aug

This currently produced our best score on the leaderboard, can reproduce a check_test_score of 0.73. Trying to run it again to improve on its score we want to know how long an epoch takes, because it seems like it's taking far too long now:


In [14]:
%run ~/repos/pylearn2/pylearn2/scripts/print_monitor.py /disk/scratch/neuroglycerin/models/alexnet_based_40aug.pkl


epochs seen:  17
time trained:  60084.537869
learning_rate : 0.0336977280676
momentum : 0.799990355968
total_seconds_last_epoch : 3460.70043945
train_h1_kernel_norms_max : 1.93638002872
train_h1_kernel_norms_mean : 1.35616624355
train_h1_kernel_norms_min : 0.596906483173
train_h1_max_x_max_u : 13.6937503815
train_h1_max_x_mean_u : 3.1057240963
train_h1_max_x_min_u : 0.0213607456535
train_h1_mean_x_max_u : 2.93430781364
train_h1_mean_x_mean_u : 0.595335006714
train_h1_mean_x_min_u : 0.00120134581812
train_h1_min_x_max_u : 1.22280919552
train_h1_min_x_mean_u : 0.0397124737501
train_h1_min_x_min_u : 0.0
train_h1_range_x_max_u : 13.6927280426
train_h1_range_x_mean_u : 3.06600475311
train_h1_range_x_min_u : 0.0213216785342
train_h2_kernel_norms_max : 1.93638002872
train_h2_kernel_norms_mean : 1.92026364803
train_h2_kernel_norms_min : 1.53414034843
train_h2_max_x_max_u : 26.5702266693
train_h2_max_x_mean_u : 5.99680089951
train_h2_max_x_min_u : 0.0
train_h2_mean_x_max_u : 6.19980716705
train_h2_mean_x_mean_u : 0.475431472063
train_h2_mean_x_min_u : 0.0
train_h2_min_x_max_u : 0.836956202984
train_h2_min_x_mean_u : 0.000608802016359
train_h2_min_x_min_u : 0.0
train_h2_range_x_max_u : 26.569984436
train_h2_range_x_mean_u : 5.99619340897
train_h2_range_x_min_u : 0.0
train_h3_kernel_norms_max : 1.93638002872
train_h3_kernel_norms_mean : 1.62886679173
train_h3_kernel_norms_min : 0.0505870878696
train_h3_max_x_max_u : 33.9597854614
train_h3_max_x_mean_u : 3.78859257698
train_h3_max_x_min_u : 0.0
train_h3_mean_x_max_u : 5.42204046249
train_h3_mean_x_mean_u : 0.235156401992
train_h3_mean_x_min_u : 0.0
train_h3_min_x_max_u : 0.640100717545
train_h3_min_x_mean_u : 0.000289711373625
train_h3_min_x_min_u : 0.0
train_h3_range_x_max_u : 33.9597854614
train_h3_range_x_mean_u : 3.78830170631
train_h3_range_x_min_u : 0.0
train_h4_kernel_norms_max : 1.93638002872
train_h4_kernel_norms_mean : 1.90925300121
train_h4_kernel_norms_min : 1.6956154108
train_h4_max_x_max_u : 26.0810832977
train_h4_max_x_mean_u : 2.00663924217
train_h4_max_x_min_u : 0.0
train_h4_mean_x_max_u : 4.55424356461
train_h4_mean_x_mean_u : 0.130693122745
train_h4_mean_x_min_u : 0.0
train_h4_min_x_max_u : 1.31998848915
train_h4_min_x_mean_u : 0.00137632351834
train_h4_min_x_min_u : 0.0
train_h4_range_x_max_u : 26.0810260773
train_h4_range_x_mean_u : 2.00526547432
train_h4_range_x_min_u : 0.0
train_h5_kernel_norms_max : 1.93638002872
train_h5_kernel_norms_mean : 1.93380451202
train_h5_kernel_norms_min : 1.92012882233
train_h5_max_x_max_u : 13.17395401
train_h5_max_x_mean_u : 1.37474024296
train_h5_max_x_min_u : 0.0
train_h5_mean_x_max_u : 4.09551715851
train_h5_mean_x_mean_u : 0.130941078067
train_h5_mean_x_min_u : 0.0
train_h5_min_x_max_u : 0.483860075474
train_h5_min_x_mean_u : 0.00117333873641
train_h5_min_x_min_u : 0.0
train_h5_range_x_max_u : 13.1613893509
train_h5_range_x_mean_u : 1.37356984615
train_h5_range_x_min_u : 0.0
train_h6_col_norms_max : 1.60248053074
train_h6_col_norms_mean : 1.28792405128
train_h6_col_norms_min : 1.04528415203
train_h6_max_x_max_u : 8.44171142578
train_h6_max_x_mean_u : 1.08287870884
train_h6_max_x_min_u : 0.0
train_h6_mean_x_max_u : 3.97602248192
train_h6_mean_x_mean_u : 0.220121502876
train_h6_mean_x_min_u : 0.0
train_h6_min_x_max_u : 1.22485494614
train_h6_min_x_mean_u : 0.00907312147319
train_h6_min_x_min_u : 0.0
train_h6_range_x_max_u : 8.20148468018
train_h6_range_x_mean_u : 1.07380461693
train_h6_range_x_min_u : 0.0
train_h6_row_norms_max : 0.786944627762
train_h6_row_norms_mean : 0.450649410486
train_h6_row_norms_min : 0.345433861017
train_objective : 0.84613275528
train_term_0 : 0.659224331379
train_term_1_weight_decay : 0.187527149916
train_y_col_norms_max : 1.93700659275
train_y_col_norms_mean : 1.9262098074
train_y_col_norms_min : 1.90836548805
train_y_max_max_class : 0.978743433952
train_y_mean_max_class : 0.784286081791
train_y_min_max_class : 0.392142772675
train_y_misclass : 0.175745591521
train_y_nll : 0.510856807232
train_y_row_norms_max : 1.25182676315
train_y_row_norms_mean : 0.632678091526
train_y_row_norms_min : 0.356613516808
training_seconds_this_epoch : 2196.15625
valid_h1_kernel_norms_max : 1.93650114536
valid_h1_kernel_norms_mean : 1.35622668266
valid_h1_kernel_norms_min : 0.59694737196
valid_h1_max_x_max_u : 13.7206487656
valid_h1_max_x_mean_u : 3.11965560913
valid_h1_max_x_min_u : 0.021165728569
valid_h1_mean_x_max_u : 2.90783452988
valid_h1_mean_x_mean_u : 0.595590949059
valid_h1_mean_x_min_u : 0.00114858790766
valid_h1_min_x_max_u : 1.23822116852
valid_h1_min_x_mean_u : 0.0402010977268
valid_h1_min_x_min_u : 0.0
valid_h1_range_x_max_u : 13.7185506821
valid_h1_range_x_mean_u : 3.07945036888
valid_h1_range_x_min_u : 0.021165728569
valid_h2_kernel_norms_max : 1.93650114536
valid_h2_kernel_norms_mean : 1.920368433
valid_h2_kernel_norms_min : 1.53422045708
valid_h2_max_x_max_u : 26.5482730865
valid_h2_max_x_mean_u : 6.02183151245
valid_h2_max_x_min_u : 0.0
valid_h2_mean_x_max_u : 6.17868995667
valid_h2_mean_x_mean_u : 0.474142670631
valid_h2_mean_x_min_u : 0.0
valid_h2_min_x_max_u : 0.836830914021
valid_h2_min_x_mean_u : 0.000649648776744
valid_h2_min_x_min_u : 0.0
valid_h2_range_x_max_u : 26.5482730865
valid_h2_range_x_mean_u : 6.02118015289
valid_h2_range_x_min_u : 0.0
valid_h3_kernel_norms_max : 1.93650114536
valid_h3_kernel_norms_mean : 1.62895929813
valid_h3_kernel_norms_min : 0.0505916513503
valid_h3_max_x_max_u : 34.1666259766
valid_h3_max_x_mean_u : 3.80540680885
valid_h3_max_x_min_u : 0.0
valid_h3_mean_x_max_u : 5.39168071747
valid_h3_mean_x_mean_u : 0.234537094831
valid_h3_mean_x_min_u : 0.0
valid_h3_min_x_max_u : 0.638080120087
valid_h3_min_x_mean_u : 0.000308986345772
valid_h3_min_x_min_u : 0.0
valid_h3_range_x_max_u : 34.1653251648
valid_h3_range_x_mean_u : 3.80509710312
valid_h3_range_x_min_u : 0.0
valid_h4_kernel_norms_max : 1.93650114536
valid_h4_kernel_norms_mean : 1.90923202038
valid_h4_kernel_norms_min : 1.69567453861
valid_h4_max_x_max_u : 26.0974369049
valid_h4_max_x_mean_u : 2.01534891129
valid_h4_max_x_min_u : 0.0
valid_h4_mean_x_max_u : 4.54664421082
valid_h4_mean_x_mean_u : 0.130625426769
valid_h4_mean_x_min_u : 0.0
valid_h4_min_x_max_u : 1.32924878597
valid_h4_min_x_mean_u : 0.00139644113369
valid_h4_min_x_min_u : 0.0
valid_h4_range_x_max_u : 26.0949039459
valid_h4_range_x_mean_u : 2.0139529705
valid_h4_range_x_min_u : 0.0
valid_h5_kernel_norms_max : 1.93650114536
valid_h5_kernel_norms_mean : 1.93391013145
valid_h5_kernel_norms_min : 1.92019450665
valid_h5_max_x_max_u : 13.2602205276
valid_h5_max_x_mean_u : 1.38517105579
valid_h5_max_x_min_u : 0.0
valid_h5_mean_x_max_u : 4.03805446625
valid_h5_mean_x_mean_u : 0.130840376019
valid_h5_mean_x_min_u : 0.0
valid_h5_min_x_max_u : 0.503250002861
valid_h5_min_x_mean_u : 0.0012131575495
valid_h5_min_x_min_u : 0.0
valid_h5_range_x_max_u : 13.2500104904
valid_h5_range_x_mean_u : 1.38395893574
valid_h5_range_x_min_u : 0.0
valid_h6_col_norms_max : 1.60251915455
valid_h6_col_norms_mean : 1.28799462318
valid_h6_col_norms_min : 1.0452644825
valid_h6_max_x_max_u : 8.41934204102
valid_h6_max_x_mean_u : 1.11460709572
valid_h6_max_x_min_u : 0.0
valid_h6_mean_x_max_u : 3.90538525581
valid_h6_mean_x_mean_u : 0.220577970147
valid_h6_mean_x_min_u : 0.0
valid_h6_min_x_max_u : 1.1610366106
valid_h6_min_x_mean_u : 0.00926616601646
valid_h6_min_x_min_u : 0.0
valid_h6_range_x_max_u : 8.18502426147
valid_h6_range_x_mean_u : 1.10534024239
valid_h6_range_x_min_u : 0.0
valid_h6_row_norms_max : 0.787031650543
valid_h6_row_norms_mean : 0.450638890266
valid_h6_row_norms_min : 0.345452129841
valid_objective : 1.24309790134
valid_term_0 : 1.05572426319
valid_term_1_weight_decay : 0.187510609627
valid_y_col_norms_max : 1.93684518337
valid_y_col_norms_mean : 1.9260481596
valid_y_col_norms_min : 1.90844333172
valid_y_max_max_class : 0.978767514229
valid_y_mean_max_class : 0.766849458218
valid_y_min_max_class : 0.368054032326
valid_y_misclass : 0.264732033014
valid_y_nll : 0.885051608086
valid_y_row_norms_max : 1.25187587738
valid_y_row_norms_mean : 0.632696509361
valid_y_row_norms_min : 0.356583625078

In [16]:
60084.537869/(17*60)


Out[16]:
58.906409675490195

In [17]:
m = pylearn2.utils.serial.load(
        "/disk/scratch/neuroglycerin/models/alexnet_based_40aug.pkl")

In [18]:
pl.monitor_channels(m, nll_channels, x_axis='time')


Out[18]:

In [22]:
pl.monitor_channels(m,['learning_rate'], x_axis='epoch')


Out[22]:

In [43]:
%run ~/repos/pylearn2/pylearn2/scripts/print_monitor.py /disk/scratch/neuroglycerin/models/alexnet_based_40aug.pkl


epochs seen:  17
time trained:  60084.537869
learning_rate : 0.0336977280676
momentum : 0.799990355968
total_seconds_last_epoch : 3460.70043945
train_h1_kernel_norms_max : 1.93638002872
train_h1_kernel_norms_mean : 1.35616624355
train_h1_kernel_norms_min : 0.596906483173
train_h1_max_x_max_u : 13.6937503815
train_h1_max_x_mean_u : 3.1057240963
train_h1_max_x_min_u : 0.0213607456535
train_h1_mean_x_max_u : 2.93430781364
train_h1_mean_x_mean_u : 0.595335006714
train_h1_mean_x_min_u : 0.00120134581812
train_h1_min_x_max_u : 1.22280919552
train_h1_min_x_mean_u : 0.0397124737501
train_h1_min_x_min_u : 0.0
train_h1_range_x_max_u : 13.6927280426
train_h1_range_x_mean_u : 3.06600475311
train_h1_range_x_min_u : 0.0213216785342
train_h2_kernel_norms_max : 1.93638002872
train_h2_kernel_norms_mean : 1.92026364803
train_h2_kernel_norms_min : 1.53414034843
train_h2_max_x_max_u : 26.5702266693
train_h2_max_x_mean_u : 5.99680089951
train_h2_max_x_min_u : 0.0
train_h2_mean_x_max_u : 6.19980716705
train_h2_mean_x_mean_u : 0.475431472063
train_h2_mean_x_min_u : 0.0
train_h2_min_x_max_u : 0.836956202984
train_h2_min_x_mean_u : 0.000608802016359
train_h2_min_x_min_u : 0.0
train_h2_range_x_max_u : 26.569984436
train_h2_range_x_mean_u : 5.99619340897
train_h2_range_x_min_u : 0.0
train_h3_kernel_norms_max : 1.93638002872
train_h3_kernel_norms_mean : 1.62886679173
train_h3_kernel_norms_min : 0.0505870878696
train_h3_max_x_max_u : 33.9597854614
train_h3_max_x_mean_u : 3.78859257698
train_h3_max_x_min_u : 0.0
train_h3_mean_x_max_u : 5.42204046249
train_h3_mean_x_mean_u : 0.235156401992
train_h3_mean_x_min_u : 0.0
train_h3_min_x_max_u : 0.640100717545
train_h3_min_x_mean_u : 0.000289711373625
train_h3_min_x_min_u : 0.0
train_h3_range_x_max_u : 33.9597854614
train_h3_range_x_mean_u : 3.78830170631
train_h3_range_x_min_u : 0.0
train_h4_kernel_norms_max : 1.93638002872
train_h4_kernel_norms_mean : 1.90925300121
train_h4_kernel_norms_min : 1.6956154108
train_h4_max_x_max_u : 26.0810832977
train_h4_max_x_mean_u : 2.00663924217
train_h4_max_x_min_u : 0.0
train_h4_mean_x_max_u : 4.55424356461
train_h4_mean_x_mean_u : 0.130693122745
train_h4_mean_x_min_u : 0.0
train_h4_min_x_max_u : 1.31998848915
train_h4_min_x_mean_u : 0.00137632351834
train_h4_min_x_min_u : 0.0
train_h4_range_x_max_u : 26.0810260773
train_h4_range_x_mean_u : 2.00526547432
train_h4_range_x_min_u : 0.0
train_h5_kernel_norms_max : 1.93638002872
train_h5_kernel_norms_mean : 1.93380451202
train_h5_kernel_norms_min : 1.92012882233
train_h5_max_x_max_u : 13.17395401
train_h5_max_x_mean_u : 1.37474024296
train_h5_max_x_min_u : 0.0
train_h5_mean_x_max_u : 4.09551715851
train_h5_mean_x_mean_u : 0.130941078067
train_h5_mean_x_min_u : 0.0
train_h5_min_x_max_u : 0.483860075474
train_h5_min_x_mean_u : 0.00117333873641
train_h5_min_x_min_u : 0.0
train_h5_range_x_max_u : 13.1613893509
train_h5_range_x_mean_u : 1.37356984615
train_h5_range_x_min_u : 0.0
train_h6_col_norms_max : 1.60248053074
train_h6_col_norms_mean : 1.28792405128
train_h6_col_norms_min : 1.04528415203
train_h6_max_x_max_u : 8.44171142578
train_h6_max_x_mean_u : 1.08287870884
train_h6_max_x_min_u : 0.0
train_h6_mean_x_max_u : 3.97602248192
train_h6_mean_x_mean_u : 0.220121502876
train_h6_mean_x_min_u : 0.0
train_h6_min_x_max_u : 1.22485494614
train_h6_min_x_mean_u : 0.00907312147319
train_h6_min_x_min_u : 0.0
train_h6_range_x_max_u : 8.20148468018
train_h6_range_x_mean_u : 1.07380461693
train_h6_range_x_min_u : 0.0
train_h6_row_norms_max : 0.786944627762
train_h6_row_norms_mean : 0.450649410486
train_h6_row_norms_min : 0.345433861017
train_objective : 0.84613275528
train_term_0 : 0.659224331379
train_term_1_weight_decay : 0.187527149916
train_y_col_norms_max : 1.93700659275
train_y_col_norms_mean : 1.9262098074
train_y_col_norms_min : 1.90836548805
train_y_max_max_class : 0.978743433952
train_y_mean_max_class : 0.784286081791
train_y_min_max_class : 0.392142772675
train_y_misclass : 0.175745591521
train_y_nll : 0.510856807232
train_y_row_norms_max : 1.25182676315
train_y_row_norms_mean : 0.632678091526
train_y_row_norms_min : 0.356613516808
training_seconds_this_epoch : 2196.15625
valid_h1_kernel_norms_max : 1.93650114536
valid_h1_kernel_norms_mean : 1.35622668266
valid_h1_kernel_norms_min : 0.59694737196
valid_h1_max_x_max_u : 13.7206487656
valid_h1_max_x_mean_u : 3.11965560913
valid_h1_max_x_min_u : 0.021165728569
valid_h1_mean_x_max_u : 2.90783452988
valid_h1_mean_x_mean_u : 0.595590949059
valid_h1_mean_x_min_u : 0.00114858790766
valid_h1_min_x_max_u : 1.23822116852
valid_h1_min_x_mean_u : 0.0402010977268
valid_h1_min_x_min_u : 0.0
valid_h1_range_x_max_u : 13.7185506821
valid_h1_range_x_mean_u : 3.07945036888
valid_h1_range_x_min_u : 0.021165728569
valid_h2_kernel_norms_max : 1.93650114536
valid_h2_kernel_norms_mean : 1.920368433
valid_h2_kernel_norms_min : 1.53422045708
valid_h2_max_x_max_u : 26.5482730865
valid_h2_max_x_mean_u : 6.02183151245
valid_h2_max_x_min_u : 0.0
valid_h2_mean_x_max_u : 6.17868995667
valid_h2_mean_x_mean_u : 0.474142670631
valid_h2_mean_x_min_u : 0.0
valid_h2_min_x_max_u : 0.836830914021
valid_h2_min_x_mean_u : 0.000649648776744
valid_h2_min_x_min_u : 0.0
valid_h2_range_x_max_u : 26.5482730865
valid_h2_range_x_mean_u : 6.02118015289
valid_h2_range_x_min_u : 0.0
valid_h3_kernel_norms_max : 1.93650114536
valid_h3_kernel_norms_mean : 1.62895929813
valid_h3_kernel_norms_min : 0.0505916513503
valid_h3_max_x_max_u : 34.1666259766
valid_h3_max_x_mean_u : 3.80540680885
valid_h3_max_x_min_u : 0.0
valid_h3_mean_x_max_u : 5.39168071747
valid_h3_mean_x_mean_u : 0.234537094831
valid_h3_mean_x_min_u : 0.0
valid_h3_min_x_max_u : 0.638080120087
valid_h3_min_x_mean_u : 0.000308986345772
valid_h3_min_x_min_u : 0.0
valid_h3_range_x_max_u : 34.1653251648
valid_h3_range_x_mean_u : 3.80509710312
valid_h3_range_x_min_u : 0.0
valid_h4_kernel_norms_max : 1.93650114536
valid_h4_kernel_norms_mean : 1.90923202038
valid_h4_kernel_norms_min : 1.69567453861
valid_h4_max_x_max_u : 26.0974369049
valid_h4_max_x_mean_u : 2.01534891129
valid_h4_max_x_min_u : 0.0
valid_h4_mean_x_max_u : 4.54664421082
valid_h4_mean_x_mean_u : 0.130625426769
valid_h4_mean_x_min_u : 0.0
valid_h4_min_x_max_u : 1.32924878597
valid_h4_min_x_mean_u : 0.00139644113369
valid_h4_min_x_min_u : 0.0
valid_h4_range_x_max_u : 26.0949039459
valid_h4_range_x_mean_u : 2.0139529705
valid_h4_range_x_min_u : 0.0
valid_h5_kernel_norms_max : 1.93650114536
valid_h5_kernel_norms_mean : 1.93391013145
valid_h5_kernel_norms_min : 1.92019450665
valid_h5_max_x_max_u : 13.2602205276
valid_h5_max_x_mean_u : 1.38517105579
valid_h5_max_x_min_u : 0.0
valid_h5_mean_x_max_u : 4.03805446625
valid_h5_mean_x_mean_u : 0.130840376019
valid_h5_mean_x_min_u : 0.0
valid_h5_min_x_max_u : 0.503250002861
valid_h5_min_x_mean_u : 0.0012131575495
valid_h5_min_x_min_u : 0.0
valid_h5_range_x_max_u : 13.2500104904
valid_h5_range_x_mean_u : 1.38395893574
valid_h5_range_x_min_u : 0.0
valid_h6_col_norms_max : 1.60251915455
valid_h6_col_norms_mean : 1.28799462318
valid_h6_col_norms_min : 1.0452644825
valid_h6_max_x_max_u : 8.41934204102
valid_h6_max_x_mean_u : 1.11460709572
valid_h6_max_x_min_u : 0.0
valid_h6_mean_x_max_u : 3.90538525581
valid_h6_mean_x_mean_u : 0.220577970147
valid_h6_mean_x_min_u : 0.0
valid_h6_min_x_max_u : 1.1610366106
valid_h6_min_x_mean_u : 0.00926616601646
valid_h6_min_x_min_u : 0.0
valid_h6_range_x_max_u : 8.18502426147
valid_h6_range_x_mean_u : 1.10534024239
valid_h6_range_x_min_u : 0.0
valid_h6_row_norms_max : 0.787031650543
valid_h6_row_norms_mean : 0.450638890266
valid_h6_row_norms_min : 0.345452129841
valid_objective : 1.24309790134
valid_term_0 : 1.05572426319
valid_term_1_weight_decay : 0.187510609627
valid_y_col_norms_max : 1.93684518337
valid_y_col_norms_mean : 1.9260481596
valid_y_col_norms_min : 1.90844333172
valid_y_max_max_class : 0.978767514229
valid_y_mean_max_class : 0.766849458218
valid_y_min_max_class : 0.368054032326
valid_y_misclass : 0.264732033014
valid_y_nll : 0.885051608086
valid_y_row_norms_max : 1.25187587738
valid_y_row_norms_mean : 0.632696509361
valid_y_row_norms_min : 0.356583625078

Continuing 40aug

Tried continuing this model with a different learning rate schedule.


In [23]:
m = pylearn2.utils.serial.load(
        "/disk/scratch/neuroglycerin/models/resume_40aug_recent.pkl")

In [24]:
pl.monitor_channels(m, nll_channels, x_axis='time')


Out[24]:

In [25]:
pl.monitor_channels(m,['learning_rate'], x_axis='epoch')


Out[25]:

Looks like something about the model is definitely broken.

Replicate 8aug with LR tuning

These settings were badly written, and I didn't check just after starting it, so it was very unlikely to work, but might as well look at how bad it was:


In [26]:
m = pylearn2.utils.serial.load(
        "/disk/scratch/neuroglycerin/models/replicate_8aug_lrschedule.pkl")

In [27]:
pl.monitor_channels(m, nll_channels, x_axis='time')


Out[27]:

Validation score failed to reach anywhere what it manages above, with only a slight change to the learning rate schedule. Could be something else is going wrong somewhere. Could try rolling back changes to the state we were at when running replicate 8aug originally.

Resuming 40aug again

We want to resume it again, but we want to make sure the learning rate is ok, and we want to run it over the whole training set, with no validation set to track.


In [44]:
m = pylearn2.utils.serial.load(
        "/disk/scratch/neuroglycerin/models/resume_40aug.pkl")

In [46]:
c = m.monitor.channels['train_y_nll']
plt.plot(c.val_record)


Out[46]:
[<matplotlib.lines.Line2D at 0x7fe48fd00dd0>]

In [47]:
pl.monitor_channels(m, m.monitor.channels.keys(), x_axis="epoch")


Out[47]:

Resuming 40aug again


In [48]:
m = pylearn2.utils.serial.load(
        "/disk/scratch/neuroglycerin/models/resume_40aug.pkl")

In [51]:
pl.monitor_channels(m, ['train_y_nll'], x_axis='epoch')pwd


Out[51]: